ISO 9001 : 2008

<1 g) SR

NEWSLETTER

VOL. 19 JULY 2015 ISSUE 2

FUZZ TESTING

0000 0100...... | Target J

- /

1SO 9001:2008 * Fuzz Testing
TELECOMMUNICATION ENGINEERING CENTRE

TEC Newsletter

July 2015

1.0 Introduction:

Fuzz testing or fuzzing is a software testing technique
used to discover security wvulnerabilities in network
protocols, applications, file formats etc. Although the
idea behind this technique is conceptually very simple,
it is a well-known and widely established methodology
employed in COTS software vulnerability discovery
process. Fuzz testing was originally developed by
Barton Miller at the University of Wisconsin in 1989.
Since then the technique has evolved a lot and it is used
internally by many companies to find bugs in their
software. All the big companies such as Microsoft,
Cisco, IBM, etc. have been using this technique to
improve software quality. The real world is full of
unexpected conditions and badly formed inputs.
Softwares used in the telecom protocol stacks
implementation and other associated implementations
must be able to deal with the poorly formed inputs,
unexpected actions and misuse of the software. Fuzzing
is the process of sending intentionally malformed inputs
to a piece of software to see whether it crashes or show
any other unexpected behavior like CPU overload,
memory leaks etc.

While using fuzzers to improve security, the end
objective is not just finding vulnerabilities, but fixing
them as well. Finding and fixing vulnerabilities in the
products before their deployment in the network
certainly saves money, protects customers and
improves reputation.

2.0 Effectiveness :

“Fuzzers are a good way to find bugs, but not so good
about making assurances that no bugs exist.” - ---
Michael Eddington ,author of the widely used open
source fuzzer Peach Fuzz testing works best for
vulnerabilities that can cause a program to crash, such
as buffer overflow, cross-site scripting, denial of service
attacks, format bugs and SQL injection. Fuzzing is less
effective for dealing with security threats that do not
cause program crashes, such as spyware, viruses,
worms, Trojans and keyloggers. Fuzz testing can
undoubtedly reveal defects that are overlooked when
software is written and debugged. Nevertheless, it
usually finds only the most serious

faults. This testing alone cannot provide a complete
picture of the overall security of the target. Fuzzers are
most effective when used in conjunction with other
proven security testing methods.

3.0 Fuzzing Process

The basic phases involved in the fuzzing process (as
shown in the figure placed at cover page of this
newsletter) are as follows:

3.1 Identification of target

Before selecting the fuzzing tool it is required to identify
the target, whether it is a protocol stack, application, file
format or a web browser.

3.2 Identification of inputs

Most of the exploitations are caused due to the fact that
target applications accept and process the user input
without sanitizing and validating the input data. Hence,
identification of inputs is a key to success of the fuzzing
process.

3.3 Generation of fuzzed data

After identification of inputs, fuzzed data must be
generated. This data may be some predetermined
values, mutation of existing samples or some
dynamically generated data depending upon the target
and inputs identified.

3.4 Execution of fuzzed data

This step goes hand in hand with the previous one. It
involves sending a fuzzed data packet towards the
target after launching a target process.

3.5 Monitoring for exceptions

Exception or fault monitoring process is one of the most
vital steps of fuzzing. Transmitting thousands of fuzzed
data packets towards a target and ultimately causing
that target to crash will be a futile exercise, if we are not
able to pinpoint the packet responsible for crash.

3.6 Reporting

Finally, the findings of the fuzzing process are compiled
in the form of a report, which later on helps in
mitigation efforts.

4.0 Fuzz Testing approaches

One of the most important aspects of fuzzing is the
generation of fuzzed inputs. These inputs or test cases
are normally generated by using one of the following
two approaches.

4.1 Generation based fuzzing

The starting point for this approach is a specification or
RFC, which describes the file format or network
protocol. Test cases are generated based on the input
data format specified in these documents. Each
generated test case should differ from the valid input to
such an extent that a problem is caused in the target
application, but should not be too invalid to be

4

TEC Newsletter

July 2015

y

discarded by the target application.Generation based
fuzzing requires a significant amount 6 of upfront work
to study the test specification and generate the test case
from scratch. But, the extra knowledge gained by
understanding the format results in higher quality test
cases.

4.2 Mutation based fuzzing

In this approach valid data samples e.g. files, traffic
captures etc. is collected and then modified. Examples
of mutations include bit flipping, replacing small string
with longer strings etc. The advantage of this approach
is little or no knowledge of target is required. All that is
needed is some good data samples. Since, the protocol
stacks and applications contain large sections of code
that may not execute with mutated inputs, mutation
based fuzzers do not often perform an effective fuzzing.

Which approach is more suitable?

It depends on requirements, availability of time and
target. For example,

i. Some clear text protocols such as FTP, SMTE etc.
lend themselves well to mutation fuzzing

ii. Some protocols such as SSH, IKE, etc will require
generation fuzzing because of the complexity of the
protocol.

Hence, it is always advisable to use both the
approaches, if possible

5.0 Types of Fuzzers

Fuzzers are classified into the following categories
based on the targets.

5.1 Protocol Fuzzer

Flaws in the implementations of network protocols are
some of the most serious security problems. Such flaws
could allow a malicious user to attack vulnerable
systems remotely over the Internet. A protocol fuzzer is
used to discover implementation flaws in a protocol
stack by sending the unusual inputs towards the target
in hopes of producing unexpected behavior.

5.2 File format Fuzzer

A large number of applications deal with file input and
output and are susceptible to vulnerabilities that occur
while parsing maliciously crafted files.File format fuzzers
discover these vulnerabilities. It dynamically creates
different malformed files and sends them towards the
target application and monitors the target for an
unexpected behaviour.

5.3 Web application Fuzzer

Web application fuzzing can discover rvulnerabilities in
the web application itself or any of the underlying
components like database server with whom it might
integrate with. For web 7 application fuzzing the delay
caused in transport of inputs from fuzzer to the target is
a challenge. Hence, if possible rather than running the
target application on a remote server it should be
hosted locally so that the packets don't have to traverse
a network. Another option is to run the web application
on a VM, while the fuzzer can be run locally. These
fuzzers are used to discover vulnerabilities such as SQL
injection, cross site scripting, command injection
vulnerability etc.

5.4 Web browser Fuzzer

Vulnerabilities in web browsers have become a major
area of concern as they are making their users victims of
several attacks such as phishing attack, identity theft,
creation of large botnets etc. Time and again,
vulnerabilities have been discovered in almost all
popular web browsers like internet explorer, Mozilla
firefox, Google chrome etc. Web browser fuzzers are
capable to discover these kinds of vulnerabilities, which
occur while parsing of malformed HTML tags,
javascript, image files like JPG, GIF and PNG, and
ActiveX controls etc.

6.0 Open Source Fuzzing tools

Open source Fuzzing tools typically fall into one of three
categories : Fuzzing frameworks, Special purpose
fuzzers and General purpose fuzzers.Fuzzing
frameworks are good if one is looking to write or
develop a new fuzzer or need to fuzz a custom or
proprietary protocol. They basically provide quick,
flexible, reusable and homogeneous development
environment for fuzzer developers.

Special purpose fuzzers are fuzzers that were written for
a specific protocol or application. These fuzzers have a
very limited scope and were usually developed to find
few loopholes in a particular protocol or application
and after that were left unmaintained.

General purpose fuzzers are generic fuzzers designed
for minimizing setup time during fuzzing sessions and
are especially useful for fast testing of proprietary and
undocumented protocols.

TEC Newsletter

July 2015

6.1 Open Source Fuzzing frameworks

Some popular open source fuzzing frameworks are
listed below.

i. Antiparser --- http:/antiparser.sourceforge.net /
Written in Python, antiparser is an API designed to
assist in creation of random data for construction of
fuzzers. This framework can be used to develop
simple fuzzers that will run 8 across multiple
platforms, but inadequate for handling complex
tasks. This framework has not been updated since
August 2005.

ii. Autodafe --- http://autodafe.sourceforge.net/
Autodafe supports fuzzing of both network
protocols and file formats. It is designed to run on
unix platforms and lacks Microsoft windows
support. It takes an xml based packet dump as an
input to generate fuzzing test cases and has
discovered mainly buffer over flow vulnerabilities.
This tool has not been updated since August 2006.

iii. Peach Fuzzer - http://peachfuzz.sourceforge.net/

Peach is a cross-platform fuzzing framework
originally written in Python and released in 2004. It
uses a combination of mutation and generation
based fuzzing. Peach Fuzzer supports fuzz testing of
any file format, network protocol, application
protocol, Android device, or embedded hardware.
It can be extended to enable fuzzing of proprietary
systems and interfaces. Its commercial version is
also available. It is under active development and
the latest update was released in November 2014.
Although, Peach is highly advanced in theory it is
not so well documented.

. Dfuz --- http://genexx.org/dfuz/

Dfuz is a remote protocol fuzzer, which is capable of
sending random data combined with the positive
inputs. It also sends rule files to the target along
with the inputs, which is parsed by the target to
know how the input data is to be used. Dfuz can
even be used by the nonprogrammers to fuzz
protocols. But, there is a very limited scope for
code reuse, as any duplication or modification of
the code is not permitted without permission of the
author. This framework has been used to uncover a
variety of vulnerabilities affecting vendors such as
Microsoft, Ipswitch and RealNetworks.

SULLEY --- http://fuzzing.org/sulley/

Sulley is a python fuzzing framework, which
exceeds the capabilities of almost all previously
published technologies in the public domain.
Mostly, fuzzers are focused on data generation.
Sulley not only has impressive data generation, but
monitors the health of the target as well as is
capable of reverting the target to a good state. It
detects, tracks and categorizes detected faults.
Sulley can pin point the unique sequence of test
cases, which triggers faults. Sulley will be taken as a
separate study paper during next year and may be
used as an open source fuzzing framework in the
upcoming security test lab.

6.2 Open Source Special-Purpose Fuzzing tools

These tools are generally written for a specific protocol
or application. Some of the commonly available open
source special-purpose fuzzing tools are:

i. SPIKE Proxy --- www.immunitysec.com/
resources-freesoftware.shtml for web applications.

Mangle --- www.lcamtuf.coredump.cx/ for HTML
file fuzzing

i. WebFuzzer --- www.gunzip.altervista.org/ for web
application fuzzing.

Ipbsic --- www.ipbsic.sourcefourge.net/ for stress
testing of an IPv6 stack implementation.

Blue Tooth Stack Smasher
www.secuobs.com/ for fuzzing of Bluetooth
devices.

vi. Radius Fuzzer ---
www.suse.de/projects/radiusfuzzer/ for fuzzing
radius protocol.

6.3 Open Source General-Purpose Fuzzing tools

These tools are good beginning to fuzzing with minimal
effort and to get ideas on how fuzzing should be done
and how it works. Some of the most common open
source general purpose fuzzing tools are mentioned
below.

i. SPIKE---wwwimmunitysec.com/
resources-freesoftware.shtml

It is the most preferred tool to analyze a new
protocol for buffer overflows or similar weaknesses.
It is available for Linux platform only and requires a
strong knowledge of C to use. One of the first block

\

4

TEC Newsletter

July 2015

based open source fuzzing tool and is known to
have found vulnerabilities in Microsoft Windows’
RPC framework and other products. This tool has
not been updated since August 2005.

ii. RADAMSA -
http://ouspg.googlecode.com/files/radamsa

It is designed to be a good general purpose tool for
developers and vendors who want to test how well
their products can withstand malicious inputs. It has
been used to find previously unknown security
vulnerabilities in handling of many kinds of file
formats with very different structure, like bmp, png,
gif, jpeg, svg, xml, ogg, avi, html, gz, bzip2, tiff, pdf
and zip. This tool is available for platforms such as
GNU/Linux, OpenBSD (and probably other BSDs).
Mac OS X and Windows (experimental).

iii. SDL MiniFuzz File Fuzzer --
http://www.microsoft.com/enus/download/details.
aspx?id=21769 10

Microsoft SDL MiniFuzz File Fuzzer is designed to
help detect code flaws that may expose security
vulnerabilities in file-handling code. This tool
creates multiple random variations of file content
and feeds it to the application to exercise the code
in an attempt to expose unexpected and potentially
insecure application behaviors. This tool is
available for windows platform only.

iv. Flayer --- https://code.google.com/p/flayer/

Goodgle's security team has released this fuzz testing
tool, which was used internally to find multiple
vulnerabilities in Internet-critical software products.
The fuzzer, called Flayer, is an analysis and flow
alteration tool that has been used to find errors in
real software. In the past years, results from Flayer
has led to the discovery of security holes in several
open - source products, including OpenSSH,
OpenSSL, LibTIFF and libPNG.

7.0 Commercial Fuzzing Tools

Entrance of commercial players in a technology space
strongly indicates that a certain level of maturity has
already been achieved. This trend has already been
witnessed with fuzzing technology. A large number of
software developers such as Microsoft, Google etc.
have adopted fuzzing as a means of identifying security

vulnerabilities earlier in the SDLC. This has resulted
into the emergence of companies to fill the need of
robust, user friendly fuzzers.

Common Fuzz tool may run on Windows, UNIX and
Linux platforms. It comes with a predefined set of
protocol modules each containing a generation based
fuzzer as per the full description of protocol in the
relevant RFCs. Support for developing mutation based
fuzzer for proprietary protocols is also available.

Testing suites are also available for file fuzzing. The
negative test cases are sent towards the target in an
attempt to see if the target survives the attacks and
continue to provide the useful service. Hardware
solution are available to perform a benchmark between
security devices (firewalls, IDSs etc). Testing is done by
creating complicated traffic scenarios or by capturing
the network traffic and recreating it, altering it or
amplifying it. The test suite include various interfaces
including command line, GUI and web based interface.

8.0 Challenges and Future Trends in Fuzzing

Although there are many open source and commercial
tools available for fuzz testing of targets such as network
protocols, file formats, web browsers, web applications
etc., many problems are expected to arise during the
testing. For example, some mutation-based fuzzers may
run indefinitely, endlessly modifying data and supplying

it to the target. Assuming the target never crashes, how
do we know when to turn off this type of fuzzer. Another
problem, which is associated with generation-based
fuzzer with finite set of fuzzed test case is even if the
target does not crash after running all the test cases,
what to do next? Should we conclude that the target is
secure? Is there a measurement technique available for
depth of fuzzing? Is there a way to improve the fuzzing
test cases based on the results of previous test runs. The
answer to all these questions can be found in a new
evolving technology known as white box fuzzing. For
white box fuzzing source code is required. It is basically
code coverage along with fuzzing, which is used to
measure the effectiveness of fuzzing. It can be used to
identify the portions of the code, which was not
covered during the fuzzing. Additional test cases can be
generated to increase the effectiveness of fuzzing.
Microsott is already using an internally developed white
box fuzzer “SAGE” for security testing of their software
products.

TEC Newsletter

July 2015

-

9.0 Standardisation Activities

3GPP has designed a security evaluation approach
under the name SECAM (Security assurance
methodology), which has been documented in
technical report TR33.805 release 12. Clause 5.2.4.4
of this document talks about basic vulnerability testing
(BVT), which consist of requirements for running
automated Free and Open Source Software (FOSS)
and Commercial off-the-shelf (COTS) security testing
tools against the external interfaces of a Network
Product. This activity covers at least three aspects: Port
Scanning, Vulnerability Scanning by the use of
Vulnerability scanners and robustness/fuzz testing.

10.0 Telecom Network vulnerabilities
discovered by Fuzz testing

In recent past, many software vulnerabilities in the
telecom network entities have been discovered by fuzz
testing. Some of them are mentioned below. i. In
2013, MME and HS-GW of a mobile network
operator crashed, which affected more than 16M
subscribers. Fuzz testing of MME and HS-GW software
revealed bugs in the software, which were found
vulnerable to DOS attacks. ii. In 2013 again another
Asia Pacific MNO had a trouble with its HSS disclosing
subscribers key material as a result of NAS injection
attack from UE over the Air (OTA). Fuzz testing of
mobile (LTE) packet core network revealed lack of
sanitization on NAS stack on MME exposing HSS to
OTA attacks iii. In 2010, HLR of a MNO crashed due
to malformed SS7 traffic resulting into 12 hour
downtime of the complete network. On fuzz testing of
the HLR SS7 stack software, DOS bugs were found.

iv. Most recently in April 2014, Heartbleed bug (CVE -
2014-0160) in the Open SSL's implementation of the
TLS/DTLS (transport layer security protocols) was
discovered again with the help of fuzz testing.

11.0 Conclusion

Fuzz testing is simple and offers a high benefit-tocost
ratio. Fuzz testing can often reveal defects that are
overlooked when software is written and debugged.
However, fuzz testing alone cannot provide a
complete picture of the overall security of a target. It
has to be used in conjunction with other security
testing techniques such as static analysis, binary
analysis etc. There are many open source and
commercial tools available for fuzzing, each having its
own strengths and weaknesses. No single approach is
full-proof, which means by using multiple approaches
for fuzzing more vulnerabilities can be discovered.

(

Activities at NTIPRIT (Jan to Jun 2015))

1. In-service ftraining courses for DoT Officers were

conducted at NTIPRIT on the following topics:

i. Renewable Energy and Energy storage
Technologies

ii. IPv6 Applications Perspective

iii. Energy conservation, Monitoring & Auditing

iv. Workshop on Greening the Telecom for sustainable
Growth
Unified License-An overview

i. Workshop on cyber Security

Total 57 officer trainees (OTs) participated in the

above courses.

. Induction Training courses for Officer Trainees of ITS-
2012 batch were conducted on 'Lawful Interception
&Monitoring' and 'Structure of Newtorks,
Interconnection & Service Provisioning'.

. Induction Training of the following Officer Trainees of
ITS/BWSstarted on 08.06.2015:

i. ITS-2012 Batch (2 officers)

ii. ITS-2013 Batch (4 officers)

iii. P&T BWS (Electrical)-2013 Batch (3 officers)
iv. P&T BWS (Civil)-2013 Batch (3 officers)

v. P&T BWS (Architect)-2010 Batch (2 officers)

. Induction Training of the following JTO batch started
from 01.06.2015:

(i) JTO Trainees — 2011 Batch (4 officers)
(ii) JTO Trainees — 2013 Batch (5 officers)

. Apart from classroom training courses, the OTs went
on a study tour to Major Telecom Installations, Telecom
Industries and TERM Cells at Chennai, Banagalore &
Hyderabad for a period of two weeks.

. The OTs of ITS-2011 batch completed their On-Job
Training in various units of DoT. Subsequently
proceeded for Six-weeks customised training
programme (4 weeks module on 'Management' and 2
weeks module on 'Government Acts and Laws for
Administrative & Business functions') at Haryana
Institute of Public Administration, HIPA, Gurgaon
commencing from February 23 , 2015.

. Smt. V. Sobhana, DDG (NGN & PR) and Shri C. S.
Sharma, Director (NP) won Prizes at the Inter-Ministry
Music, Dance & Short play Competition organised by
Central Civil Services Cultural & Sports Board (DoPT)
at CSOI, Vinay Marg, New Delhi on 17-20 Feb 2015.

. Conducted the Professional Examination of 2010 & 11
batches of ITS officers successfully. (May 27 & 28,
2015)

. Conducted the Hindi Test for 2010, 11& 12 batches of
ITS officers successfully. (May 26, 2015)

TEC Newsletter

July 2015

y

-
Hon'ble MOC & IT has released Technical report on M2M

Hon'ble MOC & IT has released Five Technical Reports of TEC
in a function in Vigyan Bhawan on 12th May 2015. These
Technical Reports are on M2M enablement in Power,
Automotive (Intelligent Transport Systems), Health (Remote
Health Management), Safety & Surveillance Sectors and on
M2M Gateway & Architecture

'mmm;mmq:e
Mwﬁﬂ:mmmw

2 Release of
tional Telecom __ 1 Roadmap'
e & sk ".‘

Conferen - e
g ng Policies - ~ulations fg

M/s Sunren Technical Solutions Pvt. Ltd.

Terminal for Connecting to PSTN,MAX EX

Terminal for Connecting to PSTN,CONVERGE PRO 880 TA
Terminal for Connecting to PSTN,CONVERGE PRO880 T

Terminal for Connecting to PSTN,CONVERGE PRO840 T

Terminal for Connecting to PSTN,CONVERGE PRO TH20

G3 FAX Machine C521 B
G3 FAX Machine C511 D

G3 FAX Machine C463 C

M/s Avaya India Pvt. Ltd

'PA'BX, Avaya Aura Communication Manager

M/s ZTE Telecom India Pvt Ltd

Switrching Node with N/W to N/W interface at STM-1,
ZXMSG9000 with ZXSS10SS1b

IESUE IR I
TIHAR ARAIHRT 5 | &1 26/03/2015 3R 16/06/2015 i fe<t
SHIATTTEA 1 SIS foha 101 |

feder 26/03/2015 1 ST FEIMEN % a9 S Tig =i,
HeHe Telev (TF.UA.) A FEed § el 1 S g
T IHN BF AT el YIEal T =1 i TR 991 FEel W SRl 9
o feefora =<t # forar =1 gema fean

feish 16/06/2015 1 AT HE & == 41 fwn 68,
TS fam gar gf e, fEEl s, Wi w5l & gay |
T W SiTel S T a9 Sl & aR H R T Ud AeEE

. /N
(&=t srrieTre & T S SAfEeRrT / SRl o)

M/s NEC India Pvt. Ltd

| PABX with SL1000

M/s Tejas Network Ltd
STM-16 TM/ADM & TJ1400
M/s Accord Comunications Ltd
PABX & ADX 600

M/s Clearone Inc

Terminal for connecting to PSTN & 880 TA

Terminal for connecting to PSTN & MAXEX

M/s ECL Telecom Ltd.

Digital Multiplexer (SDH) STM-16, BG64

Digital Multiplexer (SDH) STM-16, BG30

Digital Multiplexer (SDH) STM-1, BG20

Digital Multiplexer (SDH) STM-16, BG30 (other IR)

Digital Multiplexer (SDH) STM-64, BG64

M/s Intellicon Pvt Ltd

PABX for Network connectivity, KAREL DS 200

M/s Panasonic India Pvt Ltd

PABX for Network Connectivity, KX-NS300SX

PABX for Network Connectivity, KX-NS1000BX

M/s Aspect Contact Center Software India Pvt Ltd

System employing computer Telephony Integration DCP-00
M/s HP India Sales Pvt Ltd

G3 FAX Card BOISB-1102-00

M/s Brother International Pvt. Ltd.

G3 FAX Machine MFC-8910DW

G3 FAX Machine FAX-2840

(" Approvals from JAN 2015 to JUN 2015)

G3 FAX Machine MFC-8510DN

S.No. Name of the Company /Name of Product & Modal No.

G3 FAX Machine MFC-L2701 DW

115 M/s Huawei Telecommunications India Co Pvt Ltd
1.1 | Transmission Equipment, OptiX OSN 550

G3 FAX Machine MFC-L2701D

M/s Polycom Unified Communication Solutions Pvt. Ltd

1.2 | Transmission Equipment, OptiX OSN 550 (other IR)
1.3 | Transmission Equipment, OptiX OSN 500

ISDN CPE

M/s Arvind Limited (Telecom Division)

1.4 | Transmission Equipment, OptiX OSN 500 (other IR)

1.5 | Switrching Node with N/W to N/W interface at STM-1,
CSOFTX3000 with UMG Q900 (V1R8, V2R9)

PABX for Network Connectivity

M/s CDOT

Mini OLT based GPON

TEC Newsletter

July 2015

-

Important Activities of TEC during JAN -2015 to JUN-2015

.

rNew GRs/IRs issued on

IR on WIFI Access Point

GR on IP PABX

GR on Power Meter

GR on Hybrid M/W Radio equipment for 6GHz

GR on Database Management system for telecom

GR on 80 channel DWDM equipment with bit rate of
10G/40G/100G for Core/Metro Network applications
GR on Aerial Drop Optical Fibre Cable (for last mile
Application)

GR on Radio Access system for Broadband Application
in 3.3-3.4 GHz band.

Revised GRs/IRs issued on

IR on Universal Subscriber Identity Module

IR on Group3 Fax Machine/card

IR on Electronic Telephone Instrument

IR on ADSL 2+ system

IR on Subscriber Identity Module

IR on PABX for Network Connectivity

IR on V.90 Modem

IR on Terminal for Connectivity to PSTN

GR on Universal Subscriber Identity Module

GR on Short Message Service Cell Broadcast

GL on Planning & Maintenance guideline for Solar
Photovoltaic (SPV) Power Supply

GL on Planning guideline for Switch Mode Power
Supply (SMPS) Power Plant

GR on Remote Fibre Monitoring System

GR on L 4-7 load balancer switch

GR on Ethernet Traffic Analyser for Ethernet transport
service testing(Handheld)

Study/White Papers issued on

OTN at Edge, IP PABX

Lawful Interception in multi-access technology scenario
Identity Management, Fuzz Testing

PPDR Communication Networks

Global Technological Trend in telecommunication
Issues related to PMA, Indigenous development of
telecom technologies & domestic manufacturing of
equioment

eMS NMS Architecture in current telecom network
Lightning Protection requirement for telecom
equipment

J

ISO : 9001-2008
Certifications

issued by TEC
Type Approval (TA)
Interface Approval (IA)
Certificate of Approval (CoA)
Visit
www.tec.gov.in
Regional TEC Contact :

033-23570008
022-26610900

011-23329464
080-26642900

Eastern Region
Western Region
Northern Region

Southern Region)

N\

d Other Activity

* Six national contributions were submitted in ITU-T/R.

* New work items on "QoS norms for interconnections of
telecom networks” and "Security testing techniques for
telecom networks" based upon proposals from TEC were
accepted by ITU-T in study group 12 and 17 respectively.

* ITU-T Study Group 15 & 17 meeting held in the month of

\ FEB 2015 in TEC.)

Approvals issued by TEC during the
period from JAN 2015 to JUN 2015
Interface Approvals
Type Approvals
i Technology Approvals

DISCLAIMER : TEC Newsletter provides general technical information only and it does not reflect the views of DoT, TRAI
or any other organisation. TEC/Editor shall not be responsible for any errors, omissions or incompleteness.

21§ 9t Heiient
T 2015

9T 19
31 2

THAR AT Rt g
gyfig et 9o
ERbb)

72 faeeft-110001

Editor : Sunil Purohit, DDG (NGS) Phone : 23329354 Fax: 23318724 E-mail : ddgs.tec@gov.in

	Tech Book July 15 Page1
	Tech Book July 15 Page2
	Tech Book July 15 Page3
	Tech Book July 15 Page4
	Tech Book July 15 Page5
	Tech Book July 15 Page6
	Tech Book July 15 Page7
	Tech Book July 15 Page8

